Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2333434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536705

RESUMO

Chronic digestive disorders are of increasing incidence worldwide with expensive treatments and no available cure. Available therapeutic schemes mainly rely on symptom relief, with large degrees of variability in patients' response to such treatments, underlining the need for new therapeutic strategies. There are strong indications that the gut microbiota's contribution seems to be a key modulator of disease activity and patients' treatment responses. Hence, efforts have been devoted to understanding host-microbe interactions and the mechanisms underpinning such variability. Animal models, being the gold standard, provide valuable mechanistic insights into host-microbe interactions. However, they are not exempt from limitations prompting the development of alternative methods. Emerging microfluidic technologies and gut-on-chip models were shown to mirror the main features of gut physiology and disease state, reflect microbiota modification, and include functional readouts for studying host responses. In this commentary, we discuss the relevance of animal models in understanding host-microbe interactions and how gut-on-chip technology holds promises for addressing patient variability in responses to chronic digestive disease treatment.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Humanos , Modelos Animais , Interações entre Hospedeiro e Microrganismos , Disbiose
2.
Biochimie ; 216: 175-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37758158

RESUMO

Cathepsin C (CatC, syn. Dipeptidyl peptidase I) is a lysosomal cysteine proteinase expressed in several tissues including inflammatory cells. This enzyme is important for maintaining multiple cellular functions and for processing immune cell-derived proteases. While mutations in the CatC gene were reported in Papillon-Lefèvre syndrome, a rare autosomal recessive disorder featuring hyperkeratosis and periodontitis, evidence from clinical and preclinical studies points toward pro-inflammatory effects of CatC in various disease processes that are mainly mediated by the activation of neutrophil serine proteinases. Moreover, tumor-promoting effects were ascribed to CatC. The aim of this review is to highlight current knowledge of the CatC as a potential therapeutic target in inflammatory disorders.


Assuntos
Pneumopatias , Doença de Papillon-Lefevre , Humanos , Catepsina C/genética , Doença de Papillon-Lefevre/genética , Doença de Papillon-Lefevre/tratamento farmacológico , Mieloblastina , Mutação , Neutrófilos
3.
Sci Rep ; 13(1): 17571, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845280

RESUMO

Serine proteases are involved in many biological processes and are associated with irritable bowel syndrome (IBS) pathology. An increase in serine protease activity has been widely reported in IBS patients. While most of the studies focused on host proteases, the contribution of microbial proteases are poorly studied. In the present study, we report the analysis of proteolytic activities in fecal samples from the first Tunisian cohort of IBS-M patients and healthy individuals. We demonstrated, for the first time, that metalloproteases activities were fourfold higher in fecal samples of IBS patients compared to controls. Of interest, the functional characterization of serine protease activities revealed a 50-fold increase in trypsin-like activities and a threefold in both elastase- and cathepsin G-like activities. Remarkably, we also showed a fourfold increase in proteinase 3-like activity in the case of IBS. This study also provides insight into the alteration of gut microbiota and its potential role in proteolytic modulation in IBS. Our results stressed the impact of the disequilibrium of serine proteases, metalloproteases and gut microbiota in IBS and the need of the further characterization of these targets to set out new therapeutic approaches.


Assuntos
Síndrome do Intestino Irritável , Humanos , Serina Proteases , Endopeptidases , Metaloproteases , Elastase Pancreática , Fezes
4.
Metabolites ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557214

RESUMO

Canine inflammatory bowel diseases (IBD) are of increasing interest in veterinary medicine. They refer to complex and debilitating conditions of dogs' gastrointestinal tract. Although little evidence for causal inferences is currently available, it is believed that IBD pathophysiology entails intricate interactions between environmental factors, the intestinal immune system, and the microbial communities that colonize the gut. To better understand the mechanisms underlying these disorders, leveraging factors associated with the development of these diseases is imperative. Of these factors, emerging evidence supports the role of dietary patterns as key players influencing the composition and function of gut microbes, with subsequent effects on health and disease. In this review, we particularly focus on addressing IBD in dogs and discuss how specific nutrients may elicit or relieve gut inflammation. Gaining mechanistic insights into such interplay and the underpinning mechanisms is key to inferring dietary recommendations, and setting up new and promising therapeutics.

5.
Microorganisms ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35630391

RESUMO

Accumulating data show the involvement of intestinal microbiota in the development and maintenance of numerous diseases. Many environmental factors influence the composition and function of the gut microbiota. An animal model subjected to the same environmental constraints that will allow better characterization of the microbiota-host dialogue is awaited. The domestic dog has physiological, dietary and pathological characteristics similar to those of humans and shares the domestic environment and lifestyle of its owner. This review exposes how the domestication of dogs has brought them closer to humans based on their intrinsic and extrinsic similarities which were discerned through examining and comparing the current knowledge and data on the intestinal microbiota of humans and canines in the context of several spontaneous pathologies, including inflammatory bowel disease, obesity and diabetes mellitus.

6.
Pest Manag Sci ; 78(8): 3620-3629, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35604014

RESUMO

BACKGROUND: Understanding the mode and site of action of a herbicide is key for its efficient development, the evaluation of its toxicological risk, efficient weed control and resistance management. Recently, the mode of action (MoA) of the herbicide cinmethylin was identified in lipid biosynthesis with acyl-ACP thioesterase (FAT) as the site of action (SoA). Cinmethylin was registered for selective use in cereal crops for the control of grass weeds in 2020. RESULTS: Here, we present a high-resolution co-crystal structure of FAT in complex with cumyluron identified by a high throughput crystallization screen. We show binding to and inhibition of FAT by cumyluron. Furthermore, in an array of experiments consisting of FAT binding assays, FAT inhibition assays, physiological and metabolic profiling, we tested compounds that are structurally related to cumyluron and identified the commercial herbicides oxaziclomefone, methyldymron, tebutam and bromobutide, with so far unknown sites of action, as FAT inhibitors. Additionally, we show that the previously described FAT inhibitors cinmethylin and methiozolin bind to FAT in a nanomolar range, inhibit FAT enzymatic activity and lead to similar metabolic changes. CONCLUSION: Based on presented data, we corroborate cinmethylin and methiozolin as potent FAT inhibitors and identify FAT as the SoA of the herbicides cumyluron, oxaziclomefone, bromobutide, methyldymron and tebutam. © 2022 Society of Chemical Industry.


Assuntos
Herbicidas , Resistência a Herbicidas , Herbicidas/farmacologia , Hidrocarbonetos Bromados , Oxazinas , Plantas Daninhas , Tioléster Hidrolases , Controle de Plantas Daninhas
7.
Cells ; 11(5)2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35269523

RESUMO

Inflammatory bowel diseases (IBDs) have emerged as a public health problem worldwide with a limited number of efficient therapeutic options despite advances in medical therapy. Although changes in the gut microbiota composition are recognized as key drivers of dysregulated intestinal immunity, alterations in bile acids (BAs) have been shown to influence gut homeostasis and contribute to the pathogenesis of the disease. In this review, we explore the interactions involving BAs and gut microbiota in IBDs, and discuss how the gut microbiota-BA-host axis may influence digestive inflammation.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Ácidos e Sais Biliares , Homeostase , Humanos , Inflamação
8.
Cells ; 10(10)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34685638

RESUMO

Increased protease activity has been linked to the pathogenesis of IBD. While most studies have been focusing on host proteases in gut inflammation, it remains unclear how to address the potential contribution of their bacterial counterparts. In the present study, we report a functional characterization of a newly identified serine protease, SP-1, from the human gut microbiota. The serine protease repertoire of gut Clostridium was first explored, and the specificity of SP-1 was analyzed using a combinatorial chemistry method. Combining in vitro analyses and a mouse model of colitis, we show that oral administration of recombinant bacteria secreting SP-1 (i) compromises the epithelial barrier, (ii) alters the microbial community, and (ii) exacerbates colitis. These findings suggest that gut microbial protease activity may constitute a valuable contributor to IBD and could, therefore, represent a promising target for the treatment of the disease.


Assuntos
Colite/enzimologia , Colite/microbiologia , Disbiose/enzimologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Intestinos/patologia , Serina Proteases/metabolismo , Sequência de Aminoácidos , Animais , Colite/induzido quimicamente , Sequência Conservada , Sulfato de Dextrana , Fezes/enzimologia , Inflamação/patologia , Mucosa Intestinal/patologia , Cinética , Lactobacillus/enzimologia , Masculino , Camundongos Endogâmicos C57BL , Filogenia , Serina Proteases/administração & dosagem , Serina Proteases/química , Serina Proteases/isolamento & purificação , Especificidade por Substrato , Subtilisina/química
9.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200095

RESUMO

Inflammatory bowel diseases (IBD) are incurable disorders whose prevalence and global socioeconomic impact are increasing. While the role of host genetics and immunity is well documented, that of gut microbiota dysbiosis is increasingly being studied. However, the molecular basis of the dialogue between the gut microbiota and the host remains poorly understood. Increased activity of serine proteases is demonstrated in IBD patients and may contribute to the onset and the maintenance of the disease. The intestinal proteolytic balance is the result of an equilibrium between the proteases and their corresponding inhibitors. Interestingly, the serine protease inhibitors (serpins) encoded by the host are well reported; in contrast, those from the gut microbiota remain poorly studied. In this review, we provide a concise analysis of the roles of serine protease in IBD physiopathology and we focus on the serpins from the gut microbiota (gut serpinome) and their relevance as a promising therapeutic approach.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/fisiopatologia , Serina Proteases/química , Serpinas/metabolismo , Animais , Humanos
10.
J Vis Exp ; (172)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34152315

RESUMO

EMBL Grenoble operates the High Throughput Crystallization Laboratory (HTX Lab), a large-scale user facility offering high throughput crystallography services to users worldwide. The HTX lab has a strong focus in the development of new methods in macromolecular crystallography. Through the combination of a high throughput crystallization platform, the CrystalDirect technology for fully automated crystal mounting and cryocooling and the CRIMS software we have developed fully automated pipelines for macromolecular crystallography that can be remotely operated over the internet. These include a protein-to-structure pipeline for the determination of new structures, a pipeline for the rapid characterization of protein-ligand complexes in support of medicinal chemistry, and a large-scale, automated fragment screening pipeline enabling evaluation of libraries of over 1000 fragments. Here we describe how to access and use these resources.


Assuntos
Proteínas , Software , Cristalização , Cristalografia , Cristalografia por Raios X , Substâncias Macromoleculares
11.
Microorganisms ; 9(6)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067328

RESUMO

The gut microbiota has been increasingly linked to metabolic health and disease over the last few decades. Several factors have been suggested to be involved in lipid metabolism and metabolic responses. One mediator that has gained great interest as a clinically important enzyme is bile salt hydrolase (BSH). BSH enzymes are widely distributed in human gastrointestinal microbial communities and are believed to play key roles in both microbial and host physiology. In this review, we discuss the current evidence related to the role of BSHs in health and provide useful insights that may pave the way for new therapeutic targets in human diseases.

12.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802197

RESUMO

Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin.


Assuntos
Doenças Inflamatórias Intestinais/enzimologia , Metaloproteinases da Matriz/metabolismo , Proteólise , Serina Proteases/metabolismo , Animais , Humanos , Inflamação/enzimologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia
13.
Microb Cell Fact ; 15(1): 201, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27894344

RESUMO

BACKGROUND: In eukaryotes, the serpins constitute a wide family of protease inhibitors regulating many physiological pathways. Many reports stressed the key role of serpins in several human physiopathologies including mainly the inflammatory bowel diseases. In this context, eukaryotic serpins were largely studied and their use to limit inflammation was reported. In comparison to that, bacterial serpins and mainly those from human gut microbiota remain poorly studied. RESULTS: The two genes encoding for putative serpins from the human gut bacterium Eubacterium sireaum, display low sequence identities. These genes were overexpressed and the encoded proteins, named Siropins, were purified. Activity studies demonstrated that both purified proteins inhibited serine proteases but surprisingly they preferentially inhibited two human serine proteases (Human Neutrophil Elastase and Proteinase3). The biochemical characterization of these Siropins revealed that Siropin 1 was the most active and stable at low pH values while Siropin 2 was more thermoactive and thermostable. Kinetic analysis allowed the determination of the stoichiometry of inhibition (SI) which was around 1 and of the association rate constants of 7.7 × 104 for the Human Neutrophil Elastase and 2.6 × 105 for the Proteinase3. Moreover, both Siropins displayed the ability to inhibit proteases usually present in fecal waters. Altogether our data indicate the high efficiency of Siropins and their probable involvement in the control of the overall intestine protease activity. CONCLUSIONS: Here we report the purification and the biochemical characterization of two novel serpins originated from Eubacterium sireaum, a human gastro-intestinal tract commensal bacteria. These proteins that we called Siropins, efficiently inhibited two human proteases reported to be associated with inflammatory bowel diseases. The determination of the biochemical properties of these enzymes revealed different temperature and pH behaviours that may reflect adaptation of this human commensal bacterium to different ecological environments. To the best of our knowledge, it is the first bacterial serpins showing an attractive inhibition of fecal proteases recovered from a mice group with chemically induced inflammation. Altogether our data highlight the interesting potential of Siropins, and serpins from the human gut microbiota in general, to be used as new alternative to face inflammatory diseases.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Serina Proteases/metabolismo , Inibidores de Serino Proteinase/farmacologia , Serpinas/farmacologia , Animais , Eubacterium/química , Eubacterium/metabolismo , Microbioma Gastrointestinal , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Camundongos , Inibidores de Serino Proteinase/isolamento & purificação , Inibidores de Serino Proteinase/metabolismo , Serpinas/isolamento & purificação , Serpinas/metabolismo
14.
Acta Crystallogr D Struct Biol ; 72(Pt 4): 454-66, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27050125

RESUMO

Currently, macromolecular crystallography projects often require the use of highly automated facilities for crystallization and X-ray data collection. However, crystal harvesting and processing largely depend on manual operations. Here, a series of new methods are presented based on the use of a low X-ray-background film as a crystallization support and a photoablation laser that enable the automation of major operations required for the preparation of crystals for X-ray diffraction experiments. In this approach, the controlled removal of the mother liquor before crystal mounting simplifies the cryocooling process, in many cases eliminating the use of cryoprotectant agents, while crystal-soaking experiments are performed through diffusion, precluding the need for repeated sample-recovery and transfer operations. Moreover, the high-precision laser enables new mounting strategies that are not accessible through other methods. This approach bridges an important gap in automation and can contribute to expanding the capabilities of modern macromolecular crystallography facilities.


Assuntos
Automação Laboratorial/métodos , Cristalografia por Raios X/métodos , DNA Glicosilases/química , Lasers , Automação Laboratorial/instrumentação , Cristalografia por Raios X/instrumentação , Humanos
15.
J Biol Chem ; 291(15): 7973-89, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26900152

RESUMO

Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is one of the targets of first-line antituberculous drugs. This pathway contains a number of potential targets, including some that have been identified only recently and have yet to be explored. One such target, FadD32, is required for activation of the long meromycolic chain and is essential for mycobacterial growth. We report here an in-depth biochemical, biophysical, and structural characterization of four FadD32 orthologs, including the very homologous enzymes fromMycobacterium tuberculosisandMycobacterium marinum Determination of the structures of two complexes with alkyl adenylate inhibitors has provided direct information, with unprecedented detail, about the active site of the enzyme and the associated hydrophobic tunnel, shedding new light on structure-function relationships and inhibition mechanisms by alkyl adenylates and diarylated coumarins. This work should pave the way for the rational design of inhibitors of FadD32, a highly promising drug target.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Ligases/química , Ligases/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Carbono-Enxofre Ligases , Cristalografia por Raios X , Ligases/antagonistas & inibidores , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium/química , Mycobacterium/efeitos dos fármacos , Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/microbiologia , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/metabolismo , Conformação Proteica , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
16.
Biochem J ; 468(1): 145-58, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25748042

RESUMO

The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Tecido Nervoso/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Fenômenos Biofísicos , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Variação Genética , Humanos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Presenilina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
17.
Methods Mol Biol ; 1091: 189-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24203333

RESUMO

Construct design and sample formulation are critical in structural biology projects. Large numbers of sample variants are often produced and analyzed for a single target and significant effort is dedicated to sample characterization in order to identify at an early stage the most promising samples to help save manpower and time. Here, we present a method based on a thermal stability assay that can help estimate the likelihood of biological samples to produce crystals. This assay is rapid, inexpensive and consumes very small amounts of sample. The results can be used to prioritize certain constructs at an early stage or as an objective test to help decide when to undertake other type of approaches addressed at improving sample properties.


Assuntos
Cristalização , Fluorometria , Proteínas/química , Termodinâmica , Estabilidade Proteica , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...